Ultrassom terapêutico altera as propriedades físico-químicas de carreadores lipídicos nanoestruturados
DOI:
https://doi.org/10.15343/0104-7809.202549e17162025PPalavras-chave:
Terapia por Ultrassom, Sistemas de Liberação de Fármacos por Nanopartículas, QuercetinaResumo
A quercetina tem potencial terapêutico na recuperação de lesões musculoesqueléticas, mas, por via oral, esse polifenol apresenta baixa absorção. Sua penetração na pele pode ser potencializada por carreadores lipídicos nanoestruturados carregados com quercetina (NLC-Q) aplicados em associação com o ultrassom terapêutico pulsado (PTU). No entanto, diferentes intensidades do ultrassom de 1 MHz podem comprometer as propriedades físico-químicas das NLC-Q, porém esta interação ainda não foi avaliada. O objetivo desta pesquisa foi avaliar os efeitos de diferentes intensidades do PTU de 1 MHz nas propriedades físico-químicas de um gel contendo carreadores lipídicos nanoestruturados carregados com quercetina (NLC-Q). As NLC-Q foram desenvolvidas pelo método de alta taxa de cisalhamento. O PTU (1 MHz, por 5 min, ciclo de trabalho de 20%) foi aplicado ao gel nas intensidades de 0,1, 0,2, 0,4 e 0,6 W/ cm2 SATA (intensidade espacial média-temporal). As propriedades físico-químicas (pH, temperatura, tamanho médio das partículas, índice de polidispersão e as concentrações de quercetina contidas nos carreadores lipídicos nanoestruturados) foram avaliados antes e após as aplicações das diferentes intensidades do PTU. As intensidades de 0,1 e 0,2 W/cm2 SATA não alteraram as propriedades físico-químicas das NLC-Q, enquanto as intensidades de 0,4 e 0,6 W/cm2 SATA aumentaram o tamanho das partículas respectivamente em 14% e 44% (P < 0,001). Essas intensidades também aumentaram o índice de polidispersão em 28% e 88% (P < 0,001). Intensidades maiores que 0,4 W/cm2 SATA do PTU promovem a instabilidade das NLC-Q contido no gel, o que não favorece a administração tópica do ingrediente ativo.
Downloads
Referências
Saedi A, Rostamizadeh K, Parsa M, Dalali N, Ahmadi N. Preparation and characterization of nanostructured lipid carriers as drug delivery system: Influence of liquid lipid types on loading and cytotoxicity. Chem Phys Lipids. 2018;216:65–72. https://doi.org/10.1016/j.chemphyslip.2018.09.007
Shamsuddin NAM, Zulfakar MH. Nanostructured Lipid Carriers for the Delivery of Natural Bioactive Compounds. Curr Drug Deliv. 2023;20(2):127- 143. http://dx.doi.org/10.2174/1567201819666220324094234.
Moraes JP de, et al Sonophoresis with nanostructured lipid carrier gel containing quercetin for muscle injury treatment in rats. MLTJ. 2025;15(1):113- 120. http://dx.doi.org/10.32098/mltj.01.2025.13
Pivetta TP, et al. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J Drug Deliv Sci Technol. 2019; 53, 101148. https://doi.org/10.1016/j.jddst.2019.101148
Alharbi HOA, Alshebremi M, Babiker AY, Rahmani AH. The role of quercetin, a flavonoid in the management of pathogenesis through regulation of oxidative stress, inflammation, and biological activities. Biomolecules. 2025;15(151):1-56 https://doi.org/10.3390/biom15010151
Sousa Filho LF, Santos MMB, Menezes P dos P, Lima BS, Araújo AAS, Oliveira ED. A novel quercetin/β-cyclodextrin transdermal gel, combined or not with therapeutic ultrasound, reduces oxidative stress after skeletal muscle injury. RSC Adv. 2021;11:27837–27844. https://doi.org/10.1039/D1RA04708F
Izadifar Z, Babyn P, Chapman D. Mechanical and biological effects of ultrasound: a review of present knowledge. Ultrasound Med Biol. 2017;43(6):1085– 1104. https://doi.org/10.1016/j.ultrasmedbio.2017.01.023
Hauck M, et al. Intensity-dependent effect of pulsed and continuous therapeutic ultrasound on endothelial function: A randomised crossover clinical trial. Int J Ther Rehabil. 2019; 26(12):1-12. https://doi.org/10.12968/ijtr.2018.0049
Hauck M, et al. Comparison of the effects of 1 MHz and 3 MHz therapeutic ultrasound on endothelium-dependent vasodilation of humans: a randomised clinical trial. Physiotherapy (United Kingdom). 2019;105(1):120–125. https://doi.org/10.1016/j.physio.2017.08.010
Signori LU, et al. Effects of therapeutic ultrasound on endothelial function of patients with type 2 diabetes mellitus randomized clinical trial. Brazilian J Med Biol Res. 2023; 56, 1–8. https://doi.org/10.1590/1414-431X2023e12576
Martins CN, et al. Effects of cryotherapy combined with therapeutic ultrasound on oxidative stress and tissue damage after musculoskeletal contusion in rats. Physiotherapy (United Kingdom). 2016;102(4):377-383. https://doi.org/10.1016/j.physio.2015.10.013
Belk JW, Kraeutler MJ, Houck DA, Goodrich JA, Dragoo JL, McCarty EC. Platelet-rich plasma versus hyaluronic acid for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Am J Sports Med. 2021;49(1): 249–260. https://doi.org/10.1177/0363546520909397
Cruz JM, et al. Effects of different therapeutic ultrasound waveforms on endothelial function in healthy volunteers: a randomized clinical trial. Ultrasound Med Biol. 2016;42(2):471–480. http://linkinghub.elsevier.com/retrieve/pii/S0301562915005888
Marathe D, Bhuvanashree VS, Mehta CH, Ashwini T, Nayak UY. Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery. Adv Pharmacol Pharm Sci. 2024;5:1247450. https://doi.org/10.1155/2024/1247450
Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev. 2014;72:127–143. http://dx.doi. org/10.1016/j.addr.2014.01.007
Seah BCQ, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomedicine. 2018;13:7749–7763. http://dx.doi. org/10.2147/IJN.S174759
Park D, Park H, Seo J, Lee S. Sonophoresis in transdermal drug deliverys. Ultrasonics. 2014;54(1):56–65. http://dx.doi.org/10.1016/j.ultras.2013.07.007
Moraes JP de, et al. Development and stability of a nanostructured lipid carrier loaded with quercetin incorporated in a gel for transdermal use. Discip Sci - Ciências Nat e Tecnológicas. 2021;22(3),113–134. https://doi.org/10.37779/nt.v22i3.4108
Czajkowska-Kośnik A, Szekalska M, Winnicka K. Nanostructured lipid carriers: A potential use for skin drug delivery systems. Pharmacol Reports. 2019; 71(1):156–166. https://doi.org/10.1016/j.pharep.2018.10.008
Chowdhury SM, Abou-Elkacem L, Lee T, Dahl J, Lut AM. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J Control Release. 2020; 10(326):75–90. https://doi.org/10.1016/j.jconrel.2020.06.008
Yusof NSM, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason Sonochem. 2016;29:568–576. http://dx.doi.org/10.1016/j.ultsonch.2015.06.013
Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613. https://doi. org/10.1016/j.biopha.2018.04.055
Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, Orčić D, Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods. 2018;40:68-75. https://doi.org/10.1016/j.jff.2017.10.047
Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev. 2014;72:3–14. http://dx.doi.org/10.1016/j. addr.2013.12.010
Kooiman K, et al. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. Ultrasound Med Biol. 2020;46(6):1296–1325. https://doi. org/10.1016/j.ultrasmedbio.2020.01.002
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 O Mundo da Saúde

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.