El ultrasonido terapéutico modifica las propiedades fisicoquímicas de los transportadores lipídicos nanoestructurados
DOI:
https://doi.org/10.15343/0104-7809.202549e17162025PPalabras clave:
Terapia por Ultrasonido, Sistemas de Liberación de Fármacos mediante Nanopartículas, QuercetinaResumen
La quercetina posee un reconocido potencial terapéutico en la recuperación de lesiones musculoesqueléticas; sin embargo, presenta baja biodisponibilidad cuando administrada por vía oral. Su penetración cutánea puede ser mejorada mediante la aplicación tópica de transportadores lipídicos nanoestructurados cargados con quercetina (NLC-Q), en combinación con ultrasonido terapéutico pulsado (UTP). No obstante, diferentes intensidades de ultrasonido a 1 MHz podrían comprometer las propiedades fisicoquímicas de los NLC-Q, una interacción que aún no ha sido completamente evaluada. El objetivo de este estudio fue analizar los efectos de distintas intensidades del UTP (1 MHz) sobre las propiedades fisicoquímicas de un gel que contiene NLC-Q. Los NLC-Q fueron elaborados mediante el método de alta tasa de cizallamiento. El UTP (1 MHz, 5 minutos, ciclo de trabajo del 20%) se aplicó al gel a intensidades de 0,1, 0,2, 0,4 y 0,6 W/cm² SATA (intensidad espacial y temporal media). Se evaluaron las propiedades fisicoquímicas —pH, temperatura, tamaño medio de partícula, índice de polidispersión y concentración de quercetina encapsulada— antes y después de la aplicación de cada intensidad. Las intensidades de 0,1 y 0,2 W/cm² SATA no alteraron significativamente las propiedades de los NLC-Q. Sin embargo, las intensidades de 0,4 y 0,6 W/cm² SATA aumentaron el tamaño de las partículas en un 14% y 44%, respectivamente (P < 0,001), así como el índice de polidispersión en un 28% y 88% (P < 0,001). Intensidades superiores a 0,4 W/cm² SATA del UTP promovieron la inestabilidad de los NLC-Q en el gel, lo que podría comprometer su eficacia como sistema de administración tópica del principio activo.
Descargas
Citas
Saedi A, Rostamizadeh K, Parsa M, Dalali N, Ahmadi N. Preparation and characterization of nanostructured lipid carriers as drug delivery system: Influence of liquid lipid types on loading and cytotoxicity. Chem Phys Lipids. 2018;216:65–72. https://doi.org/10.1016/j.chemphyslip.2018.09.007
Shamsuddin NAM, Zulfakar MH. Nanostructured Lipid Carriers for the Delivery of Natural Bioactive Compounds. Curr Drug Deliv. 2023;20(2):127- 143. http://dx.doi.org/10.2174/1567201819666220324094234.
Moraes JP de, et al Sonophoresis with nanostructured lipid carrier gel containing quercetin for muscle injury treatment in rats. MLTJ. 2025;15(1):113- 120. http://dx.doi.org/10.32098/mltj.01.2025.13
Pivetta TP, et al. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J Drug Deliv Sci Technol. 2019; 53, 101148. https://doi.org/10.1016/j.jddst.2019.101148
Alharbi HOA, Alshebremi M, Babiker AY, Rahmani AH. The role of quercetin, a flavonoid in the management of pathogenesis through regulation of oxidative stress, inflammation, and biological activities. Biomolecules. 2025;15(151):1-56 https://doi.org/10.3390/biom15010151
Sousa Filho LF, Santos MMB, Menezes P dos P, Lima BS, Araújo AAS, Oliveira ED. A novel quercetin/β-cyclodextrin transdermal gel, combined or not with therapeutic ultrasound, reduces oxidative stress after skeletal muscle injury. RSC Adv. 2021;11:27837–27844. https://doi.org/10.1039/D1RA04708F
Izadifar Z, Babyn P, Chapman D. Mechanical and biological effects of ultrasound: a review of present knowledge. Ultrasound Med Biol. 2017;43(6):1085– 1104. https://doi.org/10.1016/j.ultrasmedbio.2017.01.023
Hauck M, et al. Intensity-dependent effect of pulsed and continuous therapeutic ultrasound on endothelial function: A randomised crossover clinical trial. Int J Ther Rehabil. 2019; 26(12):1-12. https://doi.org/10.12968/ijtr.2018.0049
Hauck M, et al. Comparison of the effects of 1 MHz and 3 MHz therapeutic ultrasound on endothelium-dependent vasodilation of humans: a randomised clinical trial. Physiotherapy (United Kingdom). 2019;105(1):120–125. https://doi.org/10.1016/j.physio.2017.08.010
Signori LU, et al. Effects of therapeutic ultrasound on endothelial function of patients with type 2 diabetes mellitus randomized clinical trial. Brazilian J Med Biol Res. 2023; 56, 1–8. https://doi.org/10.1590/1414-431X2023e12576
Martins CN, et al. Effects of cryotherapy combined with therapeutic ultrasound on oxidative stress and tissue damage after musculoskeletal contusion in rats. Physiotherapy (United Kingdom). 2016;102(4):377-383. https://doi.org/10.1016/j.physio.2015.10.013
Belk JW, Kraeutler MJ, Houck DA, Goodrich JA, Dragoo JL, McCarty EC. Platelet-rich plasma versus hyaluronic acid for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Am J Sports Med. 2021;49(1): 249–260. https://doi.org/10.1177/0363546520909397
Cruz JM, et al. Effects of different therapeutic ultrasound waveforms on endothelial function in healthy volunteers: a randomized clinical trial. Ultrasound Med Biol. 2016;42(2):471–480. http://linkinghub.elsevier.com/retrieve/pii/S0301562915005888
Marathe D, Bhuvanashree VS, Mehta CH, Ashwini T, Nayak UY. Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery. Adv Pharmacol Pharm Sci. 2024;5:1247450. https://doi.org/10.1155/2024/1247450
Azagury A, Khoury L, Enden G, Kost J. Ultrasound mediated transdermal drug delivery. Adv Drug Deliv Rev. 2014;72:127–143. http://dx.doi. org/10.1016/j.addr.2014.01.007
Seah BCQ, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomedicine. 2018;13:7749–7763. http://dx.doi. org/10.2147/IJN.S174759
Park D, Park H, Seo J, Lee S. Sonophoresis in transdermal drug deliverys. Ultrasonics. 2014;54(1):56–65. http://dx.doi.org/10.1016/j.ultras.2013.07.007
Moraes JP de, et al. Development and stability of a nanostructured lipid carrier loaded with quercetin incorporated in a gel for transdermal use. Discip Sci - Ciências Nat e Tecnológicas. 2021;22(3),113–134. https://doi.org/10.37779/nt.v22i3.4108
Czajkowska-Kośnik A, Szekalska M, Winnicka K. Nanostructured lipid carriers: A potential use for skin drug delivery systems. Pharmacol Reports. 2019; 71(1):156–166. https://doi.org/10.1016/j.pharep.2018.10.008
Chowdhury SM, Abou-Elkacem L, Lee T, Dahl J, Lut AM. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J Control Release. 2020; 10(326):75–90. https://doi.org/10.1016/j.jconrel.2020.06.008
Yusof NSM, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason Sonochem. 2016;29:568–576. http://dx.doi.org/10.1016/j.ultsonch.2015.06.013
Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613. https://doi. org/10.1016/j.biopha.2018.04.055
Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, Orčić D, Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods. 2018;40:68-75. https://doi.org/10.1016/j.jff.2017.10.047
Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev. 2014;72:3–14. http://dx.doi.org/10.1016/j. addr.2013.12.010
Kooiman K, et al. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. Ultrasound Med Biol. 2020;46(6):1296–1325. https://doi. org/10.1016/j.ultrasmedbio.2020.01.002
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 O Mundo da Saúde

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.