Evaluation of the protective cytogenetic activity of Parahancornia fasciculata (Apocynaceae)

DOI: 10.15343/0104-7809.202044412420

Authors

  • Gleicyanne Furtado Frazão Universidade Federal do Amapá - UNIFAP. Macapá – AP, Brasil.
  • Keren Hapuque da Silva Souza Universidade Federal do Amapá - UNIFAP. Macapá – AP, Brasil.
  • Mayck Rian Gonçalves Magalhães Faculdade Estácio de Macapá. Macapá – AP, Brasil
  • Edwin Bryan Santos do Livramento Faculdade Estácio de Macapá. Macapá – AP, Brasil
  • Paulo de Assis Barbosa Romano Faculdade Estácio de Macapá. Macapá – AP, Brasil.
  • Alessandra Azevedo do Nascimento Universidade Federal do Amapá - UNIFAP. Macapá – AP, Brasil.
  • Moacir de Azevedo Bentes Monteiro Neto Universidade Federal do Amapá - UNIFAP. Macapá – AP, Brasil.

Keywords:

Lifestyle. Body composition. Student Health. Food Service.

Abstract

Parahancornia fasciculata is a large fruit tree, native to the Amazon region, where it is popularly known as “Amapazeiro”.
It is widely used in folk medicine to assist in the treatment of several pathologies: malaria, lung problems, among other
diseases. Thus, considering the usual use of this plant, the present study evaluated the protective cytogenetic action of
Parahancornia fasciculata on polychromatic erythrocytes of Swiss mice. The animals received different concentrations
of Parahancornia fasciculata (250, 500, 1000 and 2000 mg/kg b.w.) including positive (Doxorubicin, DXR, 16 mg/kg
b.w.), negative (water), and vehicle (Dimethylsulfoxide, DMSO) control groups. Dosages were administered to the
animals via gavage, as well as the negative control and vehicle; the positive control was administered intraperitoneally.
The animals remained in the daily treatment with the respective doses for 15 days for genotoxic evaluation. Caudal
peripheral blood samples were collected at 24h, 48h, 7 and 15 days. For the antigenotoxic evaluation, on the 14th
day the mice were treated with intraperitoneal injections of DXR. Peripheral caudal blood samples were obtained at
24h and 48h. Subsequently, 2,000 polychromatic erythrocytes were counted per animal in each group, to assess the
frequency of micronuclei. The results showed that the methanolic extract of Parahancornia fasciculata was not genotoxic,
as it did not present statistically significant differences when compared to the negative control. Animals treated with
the different concentrations of Parahancornia fasciculata extract associated with DXR, obtained a significant reduction
in Micronucleated Polychromatic Erythrocytes when compared to the positive control. Therefore, the methanolic
extract of Parahancornia fasciculata demonstrated a protective action against DNA damage induced by DXR and did not
demonstrate a genotoxic effect.

Downloads

Download data is not yet available.

References

1.Da Silva GA, Ishikawa T, Da Silva MA. Projeto de implantação do horto de plantas medicinais da Faculdade de Ciências Farmacêuticas.
Universidade Federal de Alfenas. Faculdade de Ciências Farmacêuticas. Departamento de Alimentos e Medicamentos. Alfenas/MG,
2011.
2.Rios M, Martins-da-Silva RCV, Sabogal C, Martins J, Da Silva RN, De Brito RR, et al. Benefícios das plantas de capoeira para a
comunidade Benjamin Constant, Pará, Amazônia Brasileira. Belém: CIFOR, 2001. 54p.
3.Galuppo S, Plowden C. Amapá: o fortificante da Amazônia. In: Shanley P, Medina G (Org.). Frutíferas e plantas úteis na vida
amazônica. Belém, CIFOR, 2005. p. 92-96.
4.Matta A. Flora Médica Brasiliense. 3 ed. Vol 1. Manaus: Editora Valer, 2003. p. 356.
5.Shanley P, Medina G (Ed.). Frutíferas e plantas úteis na vida amazônica. Cifor, 2005.
6.Carvalho MG, Velloso CRX, Braz-Filho R, Costa WF. Acyl-lupeol esters from Paraharnia amapa (Apocynaceae). J Braz Chem Soc.
2001;12(1):556-9.
7. Agência Nacional de Vigilância Sanitária (Brasil). Guia para Condução De Estudos Não Clínicos De Toxicologia E Segurança
Farmacológica Necessários Ao Desenvolvimento De Medicamentos. Brasília: Agência Nacional de Vigilância Sanitária; 2013.
8. Venkatesh P, Shantala B, Jagetia GC, Rao KK, Baliga MS. Modulation of doxorubicin-induced genotoxicity by Aegle marmelos in
mouse bone marrow: a micronucleus study. Integr Cancer Ther. 2007;6(1):42-53.
9. MacGregor JT, Heddle JA, Hite M, Margolin BH, Ramel C, Salamone MF, et al. Guidelines for the conduct of micronucleus
assays in mammalian bone marrow erythrocytes. Mutation Research [revista em internet]. 1987 [acesso em 26 de novembro de
2019];189(2):103-12. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/0165121887900164.
10. Mersch-Sundermann V, Kassie F, Bohmer S, Lu WQ, Wohlfahrth R, Sobel R, et al. Extract of Toxicodendron quercifolium caused
genotoxicity and antigenotoxicity in bone marrow cells of CD1 mice. Food Chem Toxicol [revista em internet]. 2004 [acesso em 29 de
outubro de 2019];42(10):1611-7.
11. Waters MD, Brady AL, Stack HF, Brockman HE. Antimutagenicity profiles for some model compounds. Mutat Res Genet Toxicol.
1990;238(1):57-85.
12. Maciel MAM, Pinto CA, Veiga Junior VF. Plantas medicinais: a necessidade de estudos multidisciplinares. Quim nova [revista
em internet]. 2002 [acesso em 01 de dezembro de 2019];25(3):429-38. Disponível em: http://www.scielo.br/scielo.php?pid=S0100-
40422002000300016&script=sci_abstract&tlng=pt.
13. Grawe J. Flow cytometric analysis of micronuclei in erythrocytes. Methods Mol Biol [revista em internet]. 2005 [acesso em 02 de
dezembro de 2019];291(1): 69-83. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/15502213.
14. Ribeiro LR, Salvadori DMF, Marques EK. Mutagênese ambiental. 1 ed. Vol 1. Canoas: ULBRA; 2003.
15. Flores M, Yamaguchi UM. Micronucleus test: an evaluation for genotoxic screening. J Health [revista em internet]. 2008 [acesso
em 27 de novembro de 2019]; 1(3):337 – 40.
16. Keizer HG, Pinedo HM, Schuurhuis GJ, Joenje H. Doxorubicin (Adriamycin): a critical review of free radical-dependent mechanisms
of cytotoxicity. Pharmacol Ther [revista em internet]. 1990 [acesso em 24 de novembro de 2019]; 47(2): 219-31. Disponível em:https://www.ncbi.nlm.nih.gov/pubmed/2203071.
17. Eliot H, Giann L, Myres C. Oxidative destruction of DNA by the adriamycin–iron. Biochemistry [revista em internet]. 1984 [acesso
em 23 de novembro de 2019];28;23(5):928-36. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/6324858.
18. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: the role of lipid peroxidation in cardiac toxicity and
tumor response. Science [revista em internet]. 1977 [acesso e 26 de novembro de 2019]; 8;197(4299):165-7. Disponível em: https://
www.ncbi.nlm.nih.gov/pubmed/877547.
19. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics
adriamycin and daunorubicin. Biochem Pharmacol [revista em internet]. 1999 [acesso em 27 de novembro de 2019]; 57(7):727-41.
Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/10075079.
20. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in
antitumor activity and cardiotoxicity. Pharmacol Rev [revista em internet]. 2004 [acesso em 26 de novembro de 2019];56(2):185-229.
Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/15169927.
21. Bruton LL, Chebner BA, Knolmann BC. As bases farmacológicas da terapêutica de Goodmam & Gilman. 13 ed. Vol 1. Porto Alegre:
AMGH Editora, 2012.
22. Tavares DC, Cecchi AO, Antunes LMG, Takahashi CS. Protective effects of the amino acid glutamine and of ascorbic acid against
chromosomal damage induced by doxorubicin in mammalian cells. Teratogenesis, carcinogenesis, and mutagenesis [revista em
internet]. 1998 [acesso em 23 de novembro de 2019]; 18(4):153-161. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/
(SICI)1520-6866(1998)18:4%3C153::AID-TCM1%3E3.0.CO;2-P.
23. Knasmüller S, Steinkellner H, Majer BJ, Nobis EC, Scharf G, Kassie F. Search for dietary antimutagens and anticarcinogens:
methodological aspect and extrapolation aspect and extrapolation problems. Food Chem Toxicol [revista em internet]. 2002 [acesso
em 26 de novembro de 2019]; 40(8):1051-62. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/12067564.
24. Reigner BG, Blesch KS. Estimating the starting dose for entry into humans: principles and practice. Eur J Clin Pharmacol [revista em
internet]. 2002 [acesso em 23 de novembro de 2019];57(12): 835-45. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/11936701.
25. Galloway SM. Chromosome aberrations induced in vitro: mechanisms, delayed expression, and intriguing questions. Environ Mol
Mutagen [revista em internet]. 1994 [acesso em 23 de novembro de 2019]; 23(1):44-53. Disponível em: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/em.2850230612.
26. Kumar MR, Aithal K, Rao BN, Udupa N, Rao BS. Cytotoxic, genotoxic and oxidative stress induced by 1,4-naphthoquinone in B16F1
melanoma tumor cells. Toxicol In Vitro [revista em internet]. 2009 [acesso em 23 de novembro de 2019]; 23(2):242-50. Disponível em:
https://www.ncbi.nlm.nih.gov/pubmed/19121382.
27. Silva SL, Nascimento AZ, Ribeiro EFB, Ribeiro RB, Alves CM, Santos AM, Burmann APR, Mira Nero RA. Avaliação da toxicidade
aguda pré-clínica do extrato metanólico das cascas do caule de Parahancornia amapa (Apocynaceae). Acta Amazônica [revista em
internet]. 2016 [acesso em 16 de dezembro de 2019]; 46(1): 73 – 80. Disponível em: http://www.scielo.br/scielo.php?script=sci_
arttext&pid=S0044-59672016000100073

Published

2020-07-01

How to Cite

Furtado Frazão, G., Hapuque da Silva Souza, K. ., Rian Gonçalves Magalhães, M. ., Bryan Santos do Livramento, E. ., de Assis Barbosa Romano, P. ., Azevedo do Nascimento, A. ., & de Azevedo Bentes Monteiro Neto, M. . (2020). Evaluation of the protective cytogenetic activity of Parahancornia fasciculata (Apocynaceae): DOI: 10.15343/0104-7809.202044412420. O Mundo Da Saúde, 44, 412–420. Retrieved from https://revistamundodasaude.emnuvens.com.br/mundodasaude/article/view/964