Flow-based determination of total mercury in waters by flameless atomic absorption spectrometry

Authors

DOI:

https://doi.org/10.15343/0104-7809.202448e16392024P

Keywords:

Automated Determination, Total Mercury, Waters, Industrial Effluents, Atomic Absorption Spectrometry

Abstract

A flow injection analyzer is proposed for total mercury determination in natural waters by flameless atomic absorption spectrometry. Following a 30-min wet digestion with nitric acid under 90°C, in a closed Teflon vessel, a sample aliquot is inserted into an acidic carrier stream and, at the next confluence site, a 2.0% (w/v) stannous chloride solution and an argon flow are simultaneously added. After the gas/liquid phase separation, the evolved mercury vapor is directed towards a cylindrical windowless glass flow cell (16-cm optical path, 0.5-cm inner diameter). Details of the analyzer design and operation are provided. Mercury contents ≥ 0.25 ± 0.08 µg/L can be effectively determined at a sampling rate of 90/h. Good repeatability (r.s.d. ca 2.0%) was attained for 1.50 µg/L Hg, and results were in agreement with those obtained by the analogous manual procedure (t = - 0.10; P = 0.92; n = 6).

Downloads

Download data is not yet available.

References

The Minamata environmental creation development steering committee. Ten things to know about Minamata disease, https://www. minamatadiseasemuseum.net. Acesso em 06 nov. 2024.

Yoshino, K.; Yamada, K.; Kanaya, G.; Komorita, T.; Okamoto, K.; Tanaka, M.; Tada, Y.; Henmi, Y and Yamamoto, M. Food web structures and mercury exposition pathway to fish in Minamata bay. Arch. Environ. Contam. Toxicol. 2023, 85:360-375. https://doi. org/10.1007/s00244-023-01040-y

Rooney, R.C. Use of sodium borohydride for cold-vapour atomic-absorption determination of trace amounts of inorganic mercury. Analyst 1976. 101: 678-82. https://doi.org/10.1039/AN9760100678

Coyle, P. and Hartley, T. Automated determination of mercury in urine and blood by the Magos reagent and cold vapor atomic absorption spectrometry. Anal. Chem. 1981. 53 (2): 354-6. https://doi.org/10.1021/ac00225a053

Hatch, W.R. and Ott, W.L. Determination of submicrograms of mercury by atomic absorption spectrophotometry. Anal. Chem. 1968. 40 (14): 2085-7. https://doi.org/10.1021/ac50158a025

M. Brankovic, Green chemical analysis: main principles and current efforts towards greener analytical methodologies. Anal. Methods 2023. 15: 6631-42. https://doi.org/10.1039/d3ay01644g

El-Awady, A.A.; Miller, R.B. and Carter, M.J. Automated method for the determination of total and inorganic mercury in water and wastewater samples. Anal. Chem. 1976. 48(1): 110-6. https://doi.org/10.1021/ac60365a051

Oda, C.E and Ingle, J.D. Speciation of mercury with cold vapor atomic absorption spectrometry by selective reduction. Anal. Chem. 1981. 53(14): 2305-9.

Bettinelli, M.; Spezia, S.; Ronchi, A and Minoia, C. Determination of total urinary mercury by on-line sample microwave digestion followed by cold vapour inductively coupled plasma mass spectrometry or atomic absorption spectrometry. Rapid Commun. Mass. Spectrom. 2002. 16:1432-39. https://doi.org/10.1002/rcm.736

Agilent95-hydride generation. The determination of mercury by cold vapor atomic absorption. Atomic Absorption Application Note, Agilent Technology, 6 pp. www.agilent.com/chem. Acesso em 02 maio 2024.

Perkin-Elmer, Inc., Recommended analytical conditions and general information for flow injection mercury/hydride analyses using the Perkin Elmer FIAS-100/400, 940 Winter Street Waltham, MA 02451 USA. www.perkinelmer.com. Acesso em 04 maio 2024.

Tavares, G.A.; Ferreira, J.R.; Magalhães, C.E.C.; Silva, N.C. and Taddei, M.H.T. Mercury in the Moji-Guaçu river basin, SP-Brazil: the link between marginal lagoons and river contribution, assessed by 210Pb data profile. Ambio 2003. 32(1): 47-51. https://doi. org/10.1579/0044-7447-32.1.47

Silva, R.F.; Rocha, S.D.; Menegario, A.A.; Pedrobom, J.H.; Sulato, E.T.; Luko, K.S.; Elias, L.P.; Oliveira, L.M.S. and Sargentini, E. Determination of mercury in liver of marine tetrapods by cold vapor atomic fluorescence spectrometry and inductively coupled plasma mass spectrometry. Comparison between the two techniques. Quim. Nova 2021. 44 (1): 64-9. https://doi.org/10.21577/0100- 4042.20170675

Armstrong, H.E.L.; Corns, W.T.; Stockwell, P.B.; O’Connor, G.; Ebdon, L. and Evans, E.H. Comparison of AFS and ICP-MS detection coupled with gas chromatography for the determination of methyl mercury in marine samples. Anal. Chim. Acta 1999. 390: 245-53. https://doi.org/10.1016/S0003-2670(99)00228-7

www.psanalytical.com/information/methods/html. Acesso em 05 set. 2024.

PARR acid digestion bombs, Bulletin 4745, Moline Parr Instrument, 1978.

CONAMA, Brazilian National Environmental Council, Resolution 357, Chapter IV.

Reis, B.F.; Arruda, M.A.Z.; Zagatto, E.A.G. and Ferreira, J.R. An improved monosegmented continuous-flow system for sample introduction in flame atomic spectrometry. Anal. Chim. Acta 1988. 206 (1-2): 253-62.

American Public Health Association, American Water Work Association, and Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 14th ed. American Public Health Association, New York. 1975, p. 156-9.

Trojanowicz, M. and Kolacinska, K. Recent advances in flow injection analysis. Analyst 2016. 141: 2085-139. https://doi. org/10.1039/c5an02522b.

Zagatto, E.A.G.; Oliveira, C.C.; Townshend, A. and Worsfold, P.J. Flow Analysis with Spectrophotometric and Luminometric Detection, Amsterdam: Elsevier, 2012, 471 p.p. [ISBN: 978-0-12-385924-2].

Nham, T.T. Agilent application note. Determination of mercury with on-line addition of stannous chloride using an axial ICP-OES, 2010., 4 pp.

Ma, R.; Woods, G; and McLeod, C.W. Microcolumn field sampling and flow injection analysis: a strategy for enhanced trace analysis and element speciation, Anal. Spectrosc. Libr. 1999. 9: 439-458. https://doi.org/10.1016/S0926-4345(99)80018-2

Oliveira, L.C.; Serudo, R.L.; Botero, W.G.; Mendonça, A.G.R.; Santos, A.; Rocha, J.C. and Carvalho Neto, F.S. Distribuição de mercúrio em diferentes solos da bacia do médio rio Negro–AM: Influência da matéria orgânica no ciclo biogeoquímico do mercúrio, Quim. Nova 2007. 30(2): 274-280. https://doi.org/10.1590/S0100-40422007000200006

Araujo, P.C. 2017. Avaliação dos Teores de Mercúrio na Atmosfera em Áreas de Mineração Artesanal ou de Pequena Escala de Ouro no Brasil e Riscos à Saúde Humana. Dissertação de Mestrado, Universidade Federal Rural do Rio de Janeiro. Soropédica, RJ. 2017. 84 p.p.

https://revistapesquisa.fapesp.br/eneas-salati-o-pai-dos-rios-voadores-da-amazonia/ (on-line published in February, 2nd , 2022).

Miranda, M.R.; Coelho-Souza, S.A.; Guimarães, J.R.D.; Raquel, R.S. C & Oliveira, D. Mercúrio em sistemas aquáticos: Fatores ambientais que afetam a metilação. Oecol. Bras. 2007. 11 (2): 240-251.

Azevedo, L.S. Bioacumulação de mercúrio em espécies ícticas na porção inferior do rio Paraíba do Sul. Dissertação de Mestrado. Universidade Estadual do Norte Fluminense Darcy Ribeiro. Campos dos Goitacazes RJ. 2006. 48p.p.

Wedlas Jr, P.B.; Holanda, B.S.; Moreira, F.S.A.; Silva, J.C. e Fernandes, A.R. Mercúrio no meio ambiente: uma revisão sobre seus efeitos toxicológicos e as principais fontes de emissão, Revista DAE 2021. 69 (230): 127-139. https://doi.org/10.36659/dae.2021.036

Leopold, K.; Foulkes. M.; Worsfold, P. Methods for the determination and speciation of mercury in natural waters—A review. Anal. Chim. Acta 2010. 663: 127–131.

Ali, J.; Tuzen, M.; Shaikh, Q.; Jatoi, W.B.; Feng, X.; Sun, G.; Saleh, T.A. A review of sequential extraction methods for fractionation analysis of toxic metals in solid environmental matrices. TrAC, Trends Anal. Chem. 173, 2024, 117639. https://doi.org/10.1016/j. trac.2024.117639

Ivanenko, N.B.; Geneev, A.A.; Solvyev, N.D and Moskvin, I.N. Determination of trace elements in biological fluids. J. Anal. Chem. 2011. 66(9):784-799.

Ure, A.M and Davidson, C.M. Chemical Speciation in the Environment. Blackie Academic & Professional, London. 1995, 405 p.p.

Barbieri, E.; Passos, E. A.; Garcia, C. A. B. Use of metabolism to evaluate the sublethal toxicity of mercury on Farfantepaneus brasiliensis larvae (Latreille 1817, Crustacean). J. of Shellfish Research, 24(4):1229-1233 (2005). https://doi.org/10.2983/0730- 8000(2005)24[1229:UOMTET]2.0.CO;2.

Published

2024-12-18

How to Cite

Ferreira, J. R., Bendassoli, J. A., Pessenda, L. C. R., Krug, F. J., & Zagatto, E. A. G. (2024). Flow-based determination of total mercury in waters by flameless atomic absorption spectrometry. O Mundo Da Saúde, 48. https://doi.org/10.15343/0104-7809.202448e16392024P