Otimização do processo extrativo de Phyllanthus niruri L.

DOI: 10.15343/0104-7809.202044134143

Autores

  • Heitor Janaudis Carmagnani Centro Universitário São Camilo, São Paulo – SP, Brasil.
  • Gabriel Bucciarelli Mansano Centro Universitário São Camilo, São Paulo – SP, Brasil.
  • Flavia Sobreira Centro Universitário São Camilo, São Paulo – SP, Brasil.

Palavras-chave:

Phyllanthus niruri. Processo Extrativo. Flavonoides. Compostos fenólicos.

Resumo

Phyllanthus niruri L., conhecida como quebra-pedra, é uma planta da família Phyllanthaceae, pertencente ao gênero Phyllanthus.
Neste estudo foi avaliado o planejamento fatorial para estudar a importância dos fatores (concentração de etanol e processo
extrativo) na concentração de flavonoides e compostos fenólicos presentes nos extratos de P. niruri. Diferentes extratos de P.
niruri foram preparados utilizando etanol 50 e 96%, empregando três métodos extrativos diferentes: maceração, percolação e
ultrassom. A quantificação de flavonoides foi realizada pelo método espectrofotométrico com AlCl3 10% (v/v) em água. Já o
método utilizado para a quantificação de compostos fenólicos foi de Folin-Ciocalteu. As análises foram feitas em triplicata e
os resultados analisados nos softwares Minitab18® e Prisma GraphPad®. Foram observadas diferenças significativas (p≤0,05)
nos valores de flavonoides e compostos fenólicos totais nos extratos produzidos de P. niruri, quando foram utilizados diferentes
processos extrativos, bem como diferentes concentrações de etanol. Analisando os gráficos de Pareto, foi possível verificar
que a concentração de solvente foi o efeito que mais contribuiu na extração de ambos os compostos bioativos. Verificando
os gráficos de interações, foi possível identificar que o etanol 96% influenciou positivamente na extração de flavonoides e
o etanol 50% na extração de compostos fenólicos. Assim, o planejamento fatorial aplicado ao processo extrativo de P. niruri
evidenciou que a extração de flavonoides pode ser realizada com eficiência por métodos extrativos tradicionais, maceração
ou percolação, utilizando como solvente o etanol 96%. Já as condições otimizadas para a extração de compostos fenólicos
são por percolação ou ultrassom com etanol 50%.

Downloads

Não há dados estatísticos.

Referências

1. Lorenzi H, Matos FJA. Plantas medicinais no Brasil: nativas exóticas. 2a ed. Nova Odessa: Instituto Plantarum de Estudos da Flora;
2008. 576 p.
2. Kaur N, Kaur B, Sirhindi G. Phytochemistry and pharmacology of Phyllanthus niruri L.: a review. Phytother Res. 2017 jul;31(7):980-
1004.
3. Plantas Medicinais de Interesse ao SUS – Renisus [Internet]. Brasília: Ministério da Saúde; 2009 [citado 2019 dez 5]. Disponível
em: https://www.saude.gov.br/acoes-e-programas/programa-nacional-de-plantas-medicinais-e-fitoterapicos-ppnpmf/politica-e-programanacional-
de-plantas-medicinais-e-fitoterapicos/plantas-medicinais-de-interesse-ao-sus-renisus.
4. Mediani A, Abas F, Maulidiani M, Khatib A, Tan CP, Ismail IS, Shaari K, Ismail A. Characterization of metabolite profile in Phyllanthus
niruri and correlation with bioactivity elucidated by nuclear magnetic resonance based metabolomics. Molecule. 2017 may;22(6):1-14.
5. Dutra RC, Campos MM, Santos AR, Calixto JB. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and
perspectives. Pharmacol Res. 2016 oct;(112):4-29.
6. Noriega P, Mafud DF, Souza B, Soares-Scott M, Rivelli DP, Barros SBM, Bacchi EM. Applying design of experiments (DOE) to flavonoid
extraction from Passiflora alata and P. edulis. Rev Bras Farmacogn. 2012 oct;22(5):1119-1129.
7. Kunle OF, Egharevba HO, Ahmadu PO. Standardization of herbal medicines - a review. Int J Biodivers Conserv. 2012 mar;43(3):101-
112.
8. Bezerra ANS, Massing LT, Oliveira RB, Mourão RHV. Standardization and anti-inflammatory activity of aqueous extract of Psittacanthus
plagiophyllus Eichl. (Loranthaceae). J Ethnopharmacol. 2017 apr;(202):234-240.
9. Simões CM, Schenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR. Farmacognosia: da planta ao medicamento. 6a ed.
Florianópolis: Universidade Federal de Santa Catarina; 2007. 1104 p.
10. Costa-Machado ARM, Bastos JK, Freitas LAP. Dynamic maceration of Copaifera langsforffii leaves: a technological study using
fractional factorial design. Rev Bras Farmacogn. 2013 feb;23(1):79-85.
11. Wang J, van der Heijden R, Spruit S, Hankermeier T, Chan K, van der Greef J, Xu G, Wang M. Quality and safety of Chinese herbal
medicines guided by a systems biology perspective. J Ethnopharmol. 2009 oct;126(1):31-41.
12. Agência Nacional de Vigilância Sanitária (Brasil). Farmacopeia Brasileira: Plantas Medicinais. 6a ed. Brasília: Agência Nacional de
Vigilância Sanitária; 2019. 739 p.
13. Cardoso IC, Pereira HMG, Tappin MRR, Behrens MD. Influência da técnica de extração e do tamanho do material vegetal no teor de
compostos fenólicos da tintura das folhas de Alpinia zerumbet. Rev Fitos. 2017 set;(7):62-68.
14. Ho YC, Yu HT, Su NW. Re-examination of chromogenic quantitative assays for determining flavonoids content. J Agric Food Chem.
2012 mar;60(10):2674-2681.
15. Silva NC. Comparação do perfil de metabólitos secundários em diferentes órgãos de Phyllanthus niruri L. (Euphorbiaceae) [Trabalho
de Conclusão de Curso]. Araraquara: Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista; 2013.
16. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means
of Folin-Ciocalteu reagent. Method Enzymol. 1999 jan;299:152-178.
17. Wagner H, Bladt S. Plant drug analysis: thin layer chromatography atlas. 2a ed. Berlim: Springer; 1996. 384p.
18. Khoza BS, Chimuka L, Mukwevho E, Steenkamp PA. The effect of temperature on pressurised hot water extraction of pharmacologically
important metabolites as analysed by UPLC-qTOF-MS and PCA. Evid Based Complement Alternat Med. 2014 oct;2014:1-9.
19. Machado ARM. Obtenção de produtos a partir das folhas de Copaifera langsdorffii Desf.: otimização da extração e secagem em spray
dryer utilizando planejamentos experimentais [Dissertação]. Ribeirão Preto: Universidade de São Paulo; 2011.
20. Biagi M, Manca D, Barlozzini B, Miraldi E, Giachetti D. Optimization of extraction of drugs containing polyphenols using an innovative
technique. Agro Food Ind Hi Tech. 2014 jan;25(1):60-65.
21. Sharapin N. Fundamentos de tecnologia de produtos fitoterápicos. Colômbia: Cyted; 2000. 284 p.
22. Shah RA, Khan S, Sonawane PD, Rehman W. Phytochemical finger printing and antimicrobial activity of Phyllanthus niruri. Int J PharmSci Rev Res. 2017 jun;44(2):7-11.
23. Zain SNDM, Omar WAW. Antioxidant activity, total phenolic content and total flavonoid content of water and methanol extracts of
Phyllanthus species from Malaysia. Pharmacogn J. 2018 jun;10(4):677-681.
24. Nguang SL, Yeong YL, Pang SF, Gimbun J. Ultrasonic assisted extraction on phenolic and flavonoid content from Phyllanthus niruri
plant. INDJSRT. 2017 jan;10(2):1-5.
25. Souza CRF, Bott RF, Oliveira WP. Optimization of the extraction of flavonoids compounds from herbal material using experimental
design and multi-response analysis. Lat Am J Pharm. 2007 jun;26(5):682-690.
26. Oliveira GA, Oliveira AE, Conceição EC, Leles MI. Multitesponse optimization of an extraction procedure of carnosol and rosmarinic
and carnosic acids from rosemary. Food Chem. 2016 nov;211:465-473.
27. Migliato KF, Corrêa MA, Salgado HRN, Tognolli JO, Sacramento LVS, Mello JCP, et al. Planejamento experimental na otimização dos
frutos de Syyzgium cumini (L.) skeels. Quím Nova. 2011 fev;34(4):695-699.
28. Markom M, Hasan M, Daud WRW, Singh H, Jahim JM. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: effects of
solvents and extraction methods. Sep Purif Technol. 2007 jan;52(3):487- 496.
29. Klein-Júnior LC, Silva LM, Boeing T, Somensi LB, Beber AP, Rocha JA, Henriques AT, Andrade SF, Cechinel-Filho V. The protective
potential of Phyllanthus niruri and corilagin on gastric lesions induced in rodents by different harmful agents. Planta Med. 2017
jan;83(2):30-39.
30. Amin ZA, Abdulla MA, Ali HM, Alshawsh MA, Qadir SW. Assessment of in vitro antioxidant, antibacterial and immune activation
potentials of aqueous and ethanol extracts of Phyllanthus niruri. J Sci Food Agric. 2012 jul;92(9):1874-1877.
31. Zhang YJ, Gan RY, Li S, Zhoy Y, Li A, Xu DP, Li HB. Antioxidant phytochemicals for the prevention and treatment of chronic diseases.
Molecules. 2015 nov;20(12):21138-56.
32. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, Ismail A, Lajis NH. Phytochemical and biological features of Phyllanthus
niruri and Phyllanthus urinaria harvested at different growth stages revealed by 1H NMR-based metabolomics. Ind Crop Prod. 2015
dec;77:602-613.
33. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, Ismail A, Lajis NH. Relationship between metabolites composition and
biological activities of Phyllanthus niruri extracts prepared by different drying methods and solvents extraction. Plant Foods Hum Nutr.
2015 jun;70(2):184-192.

Publicado

2020-01-01

Como Citar

Janaudis Carmagnani, H., Bucciarelli Mansano, G. ., & Sobreira, F. . (2020). Otimização do processo extrativo de Phyllanthus niruri L.: DOI: 10.15343/0104-7809.202044134143. O Mundo Da Saúde, 44, 134–143. Recuperado de https://revistamundodasaude.emnuvens.com.br/mundodasaude/article/view/945

Edição

Seção

Artigos