Toxicological effects of nanoparticles on Plankton: implications for Environmental Health
DOI:
https://doi.org/10.15343/0104-7809.202549e18092025IKeywords:
Nanoparticles, Zooplankton, Phytoplankton, Effects, NanotoxicologyAbstract
Nanoparticles (NPs) have emerged as ubiquitous contaminants in aquatic environments due to their extensive industrial, biomedical, and agricultural applications. Their small size, high surface reactivity, and potential for toxic ion release confer upon these particles a unique capacity to interact with aquatic biota, particularly planktonic communities, which form the base of aquatic food webs. This review compiles and analyzes recent ecotoxicological findings on the effects of metallic (Ag, ZnO, TiO₂, Cu, Fe₃O₄), polymeric, and composite nanoparticles on zooplankton and phytoplankton, with emphasis on physiological, biochemical, and population-level responses. Evidence indicates that NPs can induce oxidative stress, membrane damage, growth inhibition, reproductive impairment, and metabolic disruptions in species such as Daphnia magna, Ceriodaphnia silvestrii, and Chlorella vulgaris. Ionic dissolution (e.g., Ag⁺, Zn²⁺) and reactive oxygen species (ROS) generation have been identified as primary toxicity pathways, although surface interactions and protein corona formation also modulate their bioavailability and toxicity. Sublethal and chronic exposures often disrupt planktonic community composition and productivity, with potential cascading effects on higher trophic levels and ecosystem stability. Despite advances, significant knowledge gaps persist regarding long-term ecological consequences, toxicity of mixtures with other pollutants, and NP behavior under environmentally realistic conditions. Future research should integrate mechanistic toxicology, nanoinformatics, and ecological modeling to predict environmental fate and impacts of NPs. The synthesis of green nanoparticles and implementation of standardized testing protocols are crucial for risk mitigation and guiding sustainable nanotechnology practices. By elucidating the complex interactions between NPs and planktonic organisms, this study contributes to a broader understanding of nanoparticle-induced perturbations in aquatic ecosystems and their implications for environmental health.
Downloads
Translations of this article
References
Sun TY, Mitrano DM, Bornhöft NA, Scheringer M, Hungerbühler K, Nowack B. Envisioning nano release dynamics in a changing world: using dynamic probabilistic modeling to assess future environmental emissions of engineered nanomaterials. Environ Sci Technol. 2017;51:2854-63. doi:10.1021/acs. est.5b05828
Mohanraj V, Chen Y. Nanoparticles – a review. Trop J Pharm Res. 2006;5:561-73. doi:10.4314/tjpr.v5i1.14634
Barbieri E, Campos-Garcia J, Martinez DST, Da Silva JRMC, Alves OL, Rezende KFO. Histopathological effects on gills of Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and carbon nanotubes. Microsc Microanal. 2016;22:1162-9. doi:10.1017/S1431927616012009
Aguiar AT, Ottoni CA, Simões MF, Araújo ALS, Barbieri E. Mycogenic silver nanoparticles (from Penicillium citrinum IB-CLP11) – their antimicrobial activity and potential toxicity effects on freshwater organisms. Environ Sci Nano. 2024;11:1-10. doi:10.1039/D4EN00002A
Ribeiro LG, Rezende KFO, Barbieri E, De Souza AO. Study of routine metabolism and acute toxicity of mycogenic silver nanoparticles on shrimp. Environ Sci Nano. 2023;10:1-20. doi:10.1039/D2EN00726F
Eiras MIO, Da Costa LS, Barbieri E. Copper II oxide nanoparticles (CuONPs) alter metabolic markers and swimming activity in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol. 2022;258:109343. doi:10.1016/j.cbpc.2022.109343
Fouqueray M, Dufils B, Vollat B, Chaurand P, Botta C, Abacci K, et al. Effects of aged TiO₂ nanomaterial from sunscreen on Daphnia magna exposed by dietary route. Environ Pollut. 2012;163:55-61. doi:10.1016/j.envpol.2011.11.035
Lacave JM, Fanjul A, Bilbao E, Gutierrez N, Barrio I, Arostegui I, et al. Acute toxicity, bioaccumulation and effects of dietary transfer of silver from brine shrimp exposed to PVP/PEI-coated silver nanoparticles to zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2017;199:69-80. doi:10.1016/j. cbpc.2017.03.008
An HJ, Sarkheil M, Park HS, Yu IJ, Johari SA. Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean Artemia salina. Comp Biochem Physiol C Toxicol Pharmacol. 2019;218:62-9. doi:10.1016/j.cbpc.2019.01.002
Lucca GM. Efeitos ecotoxicológicos das nanopartículas de dióxido de titânio sobre a alga Pseudokirchneriella subcapitata e sobre o cladócero Ceriodaphnia silvestrii por diferentes vias de exposição [dissertação]. São Carlos (SP): Universidade Federal de São Carlos; 2016. 132 p. Disponível em: https://repositorio.ufscar.br/bitstream/handle/ufscar/8084/DissGML.pdf?sequence=1&isAllowed=y
Ottoni CA, Lima Neto MC, Léo P, Ortolan BD, Barbieri E, De Souza AO. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms. Chemosphere. 2019;54:124698. doi:10.1016/j.chemosphere.2019.124698
Wu Q, Miao WS, Gao HJ, Hui D. Mechanical properties of nanomaterials: a review. Nanotechnol Rev. 2020;9:259-73. doi:10.1515/ntrev-2020-0021
Souza TAJ, Souza LRR, Franchi LP. Silver nanoparticles: an integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotox Environ Saf. 2019;171:691-700. doi:10.1016/j.ecoenv.2018.12.095
Tayemeh MB, Esmailbeigi M, Shirdel I, Joo HS, Johari S, Banan A, et al. Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles. Chemosphere. 2020;238:124576. doi:10.1016/j.chemosphere.2019.124576
Barbieri E, Ferrarini AMT, Rezende KFO, Martinez DST, Alves OL. Effects of multiwalled carbon nanotubes and carbofuran on metabolism in Astyanax ribeirae, a native species. Fish Physiol Biochem. 2018;44:1-10. doi:10.1007/s10695-018-0573-2
Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater. 2020;390:121974. doi:10.1016/j.jhazmat.2019.121974
Lekamge S, Miranda AF, Abraham A, Li V, Shukla R, Bansal V, et al. The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata, and Paratya australiensis. Front Environ Sci. 2018;6:152-62. doi:10.3389/fenvs.2018.00152
McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, et al. Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ. 2017;575:231-46. doi:10.1016/j.scitotenv.2016.10.041
Turner A, Brice D, Brown MT. Interactions of silver nanoparticles with the marine macroalga Ulva lactuca. Ecotoxicology. 2012;21:148-54. doi:10.1007/ s10646-011-0774-2
Croteau MN, Misra SK, Luoma SN, Valsami-Jones E. Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ Sci Technol. 2022;45:6600-7. doi:10.1021/es200880c
Alves KVB, Martinez DST, Alves OL, Barbieri E. Co-exposure of carbon nanotubes with carbofuran pesticide affects metabolic rate in Palaemon pandaliformis (shrimp). Chemosphere. 2022;288:132359. doi:10.1016/j.chemosphere.2021.132359
Posgai R, Cipolla-McCulloch CB, Murphy KR, Hussain SM, Rowe JJ, Nielsen MG. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: Size, coatings and antioxidants matter. Chemosphere. 2011;85:34–42. doi:10.1016/j.chemosphere.2011.06.040
Radniecki TS, Stankus DP, Neigh A, Nason JA, Semprini L. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere. 2011;85:43–49. doi:10.1016/j.chemosphere.2011.06.039
Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88:412–419. doi:10.1093/toxsci/kfi256
AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3:279–290. doi:10.1021/nn800596w
Medeiros AMZ, Côa F, Alves OL, Martinez DST, Barbieri E. Metabolic effects in the freshwater fish Geophagus iporangensis in response to single and combined exposure to graphene oxide and trace elements. Chemosphere. 2019;243:125316. doi:10.1016/j.chemosphere.2019.125316
Keller A, Wang X, Zhou D, Lenihan H, Cherr G, Cardinale B, et al. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol. 2010;44:1962–1967. doi:10.1021/es902987d
Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut. 2009;157:3034–3041. doi:10.1016/j.envpol.2009.05.047
Shanthi S, Jayaseelan BD, Velusamy P, Vijayakumar S, Chih CT, Vaseeharan B. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb Pathog. 2016;93:70–77. doi:10.1016/j.micpath.2016.01.014
Durán N, Martinez DST, Justo GZ, De Lima R, De Castro VL, Umbuzeiro GA, et al. Interlab study on nanotoxicology of representative graphene oxide. J Phys Conf Ser. 2015;617:012019. doi:10.1088/1742-6596/617/1/012019
Yan N, Tang BZ, Wang WX. In vivo bioimaging of silver nanoparticle dissolution in the gut environment of zooplankton. ACS Nano. 2018;12:12212 12223. doi:10.1021/acsnano.8b06003
Jarvis TA, Miller RJ, Lenihan HS, Bielmyer GK. Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet. Environ Toxicol Chem. 2013;32:1264–1269. doi:10.1002/etc.2180
Werlin R, Priester JH, Mielke RE, Kramer S, Jackson S, Stoimenov PK, et al. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol. 2011;6:65–71. doi:10.1038/nnano.2010.251
Álvarez-Manzaneda I, Ramos-Rodríguez E, López-Rodríguez MJ, Parra G, Funes A, Vicente I. Acute and chronic effects of magnetic microparticles potentially used in lake restoration on Daphnia magna and Chironomus sp. J Hazard Mater B. 2017;322:437–444. doi:10.1016/j.jhazmat.2016.10.035
Ahn YJ, Gil YG, Lee YJ, Jang H, Lee GJ. A dual-mode colorimetric and SERS detection of hydrogen sulfide in live prostate cancer cells using a silver nanoplate-coated paper assay. Microchem J. 2020;155:104724. doi:10.1016/j.microc.2020.104724
Park J, Kim S, Yoo J, Lee JS, Park JW, Jung J. Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull. 2014;85:526–531. doi:10.1016/j.marpolbul.2014.04.038
Yoo-iam M, Chaichana R, Satapanajaru T. Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver barb (Barbonymus gonionotus). Chem Speciat Bioavailab. 2014;26:257–265. doi:10 .3184/095422914X14144332205573
Wong SWY, Leung PTY, Djurišić AB, Leung KMY. Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem. 2010;396:609–618. doi:10.1007/s00216-009-3249-z
Rezende KFO, Bergami E, Alves KVB, Corsi I, Barbieri E. Titanium dioxide nanoparticles alters routine metabolism and causes histopathological alterations in Oreochromis niloticus. Bol Inst Pesca. 2018;44:343–343. doi:10.20950/1678-2305.2018.343
Campos-Garcia J, Martinez DST, Rezende KFO, Da Silva JRMC, Alves OL, Barbieri E. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicol Environ Saf. 2016;133:481–488. doi:10.1016/j.ecoenv.2016.07.041
Melo CB, Côa F, Alves OL, Martinez DST, Barbieri E. Co-exposure of graphene oxide with trace elements: Effects on acute ecotoxicity and routine metabolism in Palaemon pandaliformis (shrimp). Chemosphere. 2019;223:157–164. doi:10.1016/j.chemosphere.2019.02.017
Garcia JC, Martinez DST, Alves OL, Barbieri E. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: Nanotubes enhance pesticide ecotoxicity. Ecotoxicol Environ Saf. 2015;111:131–137. doi:10.1016/j.ecoenv.2014.10.005
Vijayakumar S, Vaseeharan B, Malaikozhundan B, Divya M, Abhinaya M, Gobi N, et al. Ecotoxicity of Musa paradisiaca leaf extract-coated ZnO nanoparticles to the freshwater microcrustacean Ceriodaphnia cornuta. Limnologica. 2017;67:1–6. doi:10.1016/j.jphotobiol.2019.111558
Prato E, Parlapiano I, Biandolino F, Rotini A, Manfra L, Berducci MT, et al. Chronic sublethal effects of ZnO nanoparticles on Tigriopus fulvus (Copepoda, Harpacticoida). Environ Sci Pollut Res. 2020;27:30957–30968. doi:10.1007/s11356-019-07006-9
Schrurs F, Lison D. Focusing the research efforts. Nat Nanotechnol. 2012;7:546–548. doi:10.1038/nnano.2012.148
De Souza HSV. Efeito de nanopartículas de óxido de zinco e do sulfato de zinco no cladócero tropical Ceriodaphnia silvestrii [dissertação de mestrado]. São Carlos: Universidade Federal de São Carlos; 2018. p.142. Disponível em: https://repositorio.ufscar.br/bitstream/handle/ufscar/10219/ SOUZA_Helena_2018.pdf?sequence=6&isAllowed=y
Huang CW, Li SW, Liao VHC. Chronic ZnO NPs exposure at environmentally relevant concentrations results in metabolic and locomotive toxicities in Caenorhabditis elegans. Environ Pollut. 2017;220:1456–1464. doi:10.1016/j.envpol.2016.10.086
Garbutt JS, Little TJ. Maternal food quantity affects offspring feeding rate in Daphnia magna. Biol Lett. 2014;10:20140356. doi:10.1098/rsbl.2014.0356
Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles: A review. Environ Pollut. 2013;172:76–85. doi:10.1016/j. envpol.2012.08.011
Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ Sci Technol. 2007;41:8484–8490. doi:10.1021/es071445r
Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2:2121–2134. doi:10.1021/nn800511k
Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology. 2008;17:387–395. doi:10.1007/s10646-008-0208-y
Shokry A, Khalil M, Ibrahim H, Soliman M, Ebrahim S. Acute toxicity assessment of polyaniline/Ag nanoparticles/graphene oxide quantum dots on Cypridopsis vidua and Artemia salina. Sci Rep. 2021;11:5336. doi:10.1038/s41598-021-84903-5
Cedervall T, Hansson LA, Lard M, Frohm B, Linse S. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One. 2012;7:e32254. doi:10.1371/journal.pone.0032254
Martinez DST, Alves OL, Barbieri E. Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J Phys Conf Ser. 2013;429:012043. doi:10.1088/1742-6596/429/1/012043
Martinez DST, Faria AF, Berni E, Souza Filho AG, Almeida G, Caloto-Oliveira A, et al. Exploring the use of biosurfactants from Bacillus subtilis in bionanotechnology: A potential dispersing agent for carbon nanotube ecotoxicological studies. Process Biochem. 2014;49:1162–1168. Disponível em: https://www.sciencedirect.com/science/article/pii/S135951131400230X
Martinez DST, Silva GH, Medeiros AMZ, Khan LU, Papadiamantis AG, Lynch I. Effect of the albumin corona on the toxicity of combined graphene oxide and cadmium to Daphnia magna and integration of the datasets into the NanoCommons Knowledge Base. Nanomaterials. 2020;10:1936. Disponível em: https://www.mdpi.com/2079-4991/10/10/1936
Martins CHZM, Ellis LJA, Da Silva GH, Petry R, Medeiros AMZ, Davoudi HH, et al. Daphnia magna and mixture toxicity with nanomaterials: Current status and perspectives in data-driven risk prediction. Nano Today. 2022;43:101430. Disponível em: https://www.sciencedirect.com/science/article/pii/ S1748013222000573
Gebara RC. Toxicidade de nanopartículas de óxido de ferro (Fe3O4) para o cladócero tropical Ceriodaphnia silvestrii [dissertação de mestrado]. São Carlos: Universidade Federal de São Carlos; 2017. p.123. Disponível em: https://repositorio.ufscar.br/bitstream/handle/ufscar/9045/DissRCG. pdf?sequence=1&isAllowed=y
Sanz Lanzas C. Efecto de nanoplásticos de poliestireno carboxílicos sobre algunos aspectos fisiológicos y bioquímicos en Artemia parthenogenetica. Instituto de Acuicultura de Torre de la Sal (IATS), Universidad de Valencia; 2017. p.132. Disponível em: https://digital.csic.es/handle/10261/191836
Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS. TiO₂ nanoparticles are phototoxic to marine phytoplankton. PLoS One. 2012;7:e30321. https:// doi.org/10.1371/journal.pone.0030321
Bielmyer-Fraser GK, Jarvis TA, Lenihan HS, Miller RJ. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton. Environ Sci Technol. 2014;48:13443–13450. https://doi.org/10.1021/es501187g
Conine AL, Rearick DC, Paterson MJ, Xenopoulos MA, Frost PC. Addition of silver nanoparticles has no long-term effects on natural phytoplankton community dynamics in a boreal lake. Limnol Oceanogr Lett. 2018;1–12. https://doi.org/10.1002/lol2.10071
Baptista MS, Miller RJ, Halewood ER, Hanna SK, Almeida CMR, Vasconcelos VM, Keller AA, Lenihan HS. Impacts of silver nanoparticles on a natural estuarine plankton community. Environ Sci Technol. 2015;49:12968–12974. https://doi.org/10.1021/acs.est.5b03285
Romero N, Visentini FF, Márquez VE, Santiago LG, Castro GR, Gagneten AM. Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Environ Res. 2020;189:109857. https://doi.org/10.1016/j.envres.2020.109857
Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. 2008;42:8959–8964. https://doi.org/10.1021/es801785m
Oukarroum A, Bras S, Perreault F, Popovic R. Inhibitory effect of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotox Environ Saf. 2012;78:80–85. https://doi.org/10.1016/j.ecoenv.2011.11.012
Nikokherad H, Esmaili-Sari A, Moradi AM, Bahramifar N, Mostafavi PG. Bioaccumulation capacity of Chlorella vulgaris and Spirulina platensis exposed to silver nanoparticles and silver nitrate: Bio- and health risk assessment approach. Algal Res. 2022;64:102671.
Andrea L, Conine DC, Rearick MJ, Paterson MA, Xenopoulos PC, Frost C. Addition of silver nanoparticles has no long‐term effects on natural phytoplankton community dynamics in a boreal lake. Limnol Oceanogr Lett. 2018;3:311–319. https://doi.org/10.6084/m9.figshare.5687356.v2
Vincent JL, Paterson MJ, Norman BC, Gray EP, Ranville JF, Scott AB, Frost PC, Xenopoulos MA. Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton. Ecotoxicology. 2017;26:502–515. https://doi.org/10.1007/s10646-017-1781-8
Abo-Elmagd RA, Hamouda RA, Hussein MH. Phycotoxicity and catalytic reduction activity of green synthesized Oscillatoria gelatin-capped silver nanoparticles. Sci Rep. 2022;12:20378.
Zhang C, Li Y, Wang P, Zhang H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr Rev Food Sci Food Saf. 2020;19:479–502. https://doi.org/10.1111/1541-4337.12536
Silva CS, da Silva BM, Ribeiro CV, Trotta FC, Perina R, Martins A, Abessa DMS, Barbieri E, Simões MF, Ottoni CA. Effects of mycogenic silver nanoparticles on organisms of different trophic levels. Chemosphere. 2022;308:136540. https://doi.org/10.1016/j.chemosphere.2022.136540
Takasu H, Nakata K, Ito M, Yasui M, Yamaguchi M. Effects of TiO₂ and ZnO nanoparticles on the growth of phytoplankton assemblages in seawater. Mar Environ Res. 2023;183:105826. https://doi.org/10.1016/j.marenvres.2022.105826
Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D. Effect of silver nanoparticles on growth and eukaryotic green algae. Nano-Micro Lett. 2012;4:158 165. https://doi.org/10.1007/BF03353707
Melo DC. Efeitos de nanopartículas magnéticas sobre a microalga Raphidocelis subcapitata [dissertação de mestrado]. Universidade Federal de São Carlos, Programa de Pós-Graduação em Ecologia e Recursos Naturais; 2016. p.132. Disponível em: https://repositorio.ufscar.br/bitstream/handle/ ufscar/10904/DissDCM.pdf?sequence=1&isAllowed=y
Wang J, Tan L, Li Q, Wang J. Toxic effects of nSiO₂ and mPS on diatoms Nitzschia closterium f. minutissima. Mar Environ Res. 2024;193:106298. https://doi.org/10.1016/j.marenvres.2023.106298
Vignardi CP, Adeleye AS, Kayal M, Oranu E, Miller RJ, Keller AA, Holden PA, Lenihan HS. Aging of copper nanoparticles in the marine environment regulates toxicity for a coastal phytoplankton species. Environ Sci Technol. 2023;57:6989–6998. https://doi.org/10.1021/acs.est.2c07953
D’Ors A, Sánchez-Fortún A, Cortés-Téllez AA, Fajardo C, Mengs G, Nande M, Martín C, Cost G, Martín M, Bartolomé MC, Sánchez-Fortún S. Adverse effects of iron-based nanoparticles on freshwater phytoplankton Scenedesmus armatus and Microcystis aeruginosa strains. Chemosphere. 2023;339:139710. https://doi.org/10.1016/j.chemosphere.2023.139710
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 O Mundo da Saúde

This work is licensed under a Creative Commons Attribution 4.0 International License.



























