Quality of Food in the University Community based on the Food Guide for the Brazilian Population

10.15343/0104-7809.202246458471I

Authors

Keywords:

Food Consumption. Adults. Nutrition.

Abstract

Studies show that the consumption of ultra-processed foods increases the risk of non-communicable chronic diseases. Therefore, this study aimed to investigate the quality of the food of a university community based upon the Dietary Guidelines for the Brazilian Population. An analytical observational study was carried out, with a cross-sectional design. University students, professors, academic coordinators, and other employees participated in the study, respecting the following inclusion criteria: both sexes, 18-60 years old, formally associated with the Institution, who have access to the internet, and who accepted to participate through an electronic informed consent form. An electronic QR-Code questionnaire was applied to qualitatively assess the health habits and especially the dietary habits of the sample. Data was collected from September-December/2019. The study is approved by the Ethics Committee. The total sample consisted of 710 volunteers. The average age was 26.7±9.2 years old, considering 87.2% women, and 85.5% students. The average body mass index (BMI) was 24.2±4.5 kg/m² (61.4% eutrophic, 34.5% overweight, 4.1% malnourished). The average score was 39.4±10.9 points. The distribution of the dietary pattern was 41.4% “Excellent”, 36.8% “Intermediate”, and 21.8% “Deficient diet”. When considering the relationship with the institution, the employee’s quality of the food was lower than student, professor, and coordinator (p≤0.001). In the total sample, the eutrophic students had a better quality of the food. Correlations with BMI were found with food score (r=-0.224; p≤0.001) and age (r=0.319; p≤0.001) and confirmed through a linear regression of BMI with the food score (β=-0.283; p≤0.001) and with age (β=0.343; p≤0.001). Therefore, most of the sample reported excellent food quality, however, 1 out of 3 members was overweight. The food score and age influenced the BMI value.

Downloads

Download data is not yet available.

References

1. Organização Mundial da Saúde (OMS). Dia Mundial da Saúde 2016: Combate o diabetes. Brasil: OMS; 2016. Available from: https://www3.paho.org/bireme/index.php?option=com_content&view=article&id=326:dia-mundial-da-saude-2016-com¬bater-o-diabetes&Itemid=183&lang=es
2. Popkin BM. Nutrition Transition and the Global Diabetes Epidemic. Curr Diab Rep. 2015;15(9):64. https://doi.org/10.1007/ s11892-015-0631-4.
3. Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Guia alimentar para a população brasileira.2. ed., Brasília: Ministério da Saúde, 2014.
4. De Andrade LM, Bocca C. Análise Comparativa de Guias Alimentares: Proximidades e distinções entre três países. Demetra. 2016;11(4):1001–16. https://doi.org/10.12957/demetra.2016.20414.
5. König LM, Giese H, Stok FM, Renner B. The social image of food: Associations between popularity and eating behavior. Appetite. 2017; 114:248-58. https://doi.org/10.1016/j.appet.2017.03.039.
6. Sogari G, Velez-Argumedo C, Gómez M, Mora C. College Students and Eating Habits: A Study Using an Ecological Model for Healthy Behavior. Nutrients. 2018;10(12):1823.: https://doi.org/10.3390/nu10121823.
7. Klotz-Silva J, Prado SD, Seixas CM. Comportamento alimentar no campo da Alimentação e Nutrição: do que estamos falando? Physis. 2016;26(4):1103–23. https://doi.org/10.1590/s0103-73312016000400003.
8. Gabe KT, Jaime PC. Development and testing of a scale to evaluate diet according to the recommendations of the Dietary Guidelines for the Brazilian Population. Public Health Nutr. 2019 Apr;22(5):785-796. https://doi.org/10.1017/ S1368980018004123.
9. Oliveira RTQ, Ignacio CF, Moraes Neto AHA, Barata MML. Matriz de avaliação de programas de promoção da saúde em territórios de vulnerabilidade social. Ciência & Saúde Coletiva . 2017;22(12):3915-32. https://doi.org/10.1590/1413- 812320172212.24912017.
10. Monteiro CA, Levy RB, Claro RM, de Castro IR, Cannon G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 2011 Jan;14(1):5-13. https://doi.org/10.1017/ S1368980010003241.
11. Monteiro CA, Levy RB, Claro RM, Castro IRR, Cannon G. A new classification of foods based on the extent and purpose of food processing. Cad Saúde Pública 2010;26:2039-49. https://doi.org/10.1590/S0102-311X2010001100005.
12. Menezes MFG, Maldonado LA. Do nutricionismo à comida: a culinária como estratégia metodológica de educação alimentar e nutricional. Revista HUPE. 2015;14(3):82-9. https://doi.org/10.12957/rhupe.2015.19950
13. Miller L, Cassady D, Applegate E, Beckett L, Wilson M, Gibson T, et al. Relationships among Food Label Use, Motivation, and Dietary Quality. Nutrients. 2015;7(2):1068-80. https://doi.org/10.3390/nu7021068.
14. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Secretaria de Gestão Estratégica e Participativa. Vigitel Brasil 2018: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros. Brasília: Ministério da Saúde; 2019.
15. Nilson EAF, Andrade RCS, Brito DA, Oliveira ML. Custos atribuíveis a obesidade, hipertensão e diabetes no Sistema Único de Saúde, Brasil, 2018. Rev Panam Salud Publica. 2020;44:e32. https://doi.org/10.26633/RPSP.2020.32.
16. Bortolini GA, Oliveira TFV, Silva SA, Santin RC, Medeiros OL, Spaniol AM, et al. Ações de alimentação e nutrição na atenção primária à saúde no Brasil. Rev Panam Salud Publica. 2020;44:e39. https://doi.org/10.26633/RPSP.2020.39.
17. Murimi MW, Nguyen B, Moyeda-Carabaza AF, Lee HJ, Park OH. Factors that contribute to effective online nutrition education interventions: a systematic review. Nutr Rev. 2019;77(10):663-690. https://doi.org/10.1093/nutrit/nuz032.
18. Instituto Brasileiro de Geografia e Estatística, organizador. Pesquisa de orçamentos familiares (POF), 2017-2018: primeiros resultados. Rio de Janeiro: IBGE; 2019. 64 p.
19. Oliveira RTQ de, Ignacio CF, Moraes Neto AHA de, Barata MM de L. Matriz de avaliação de programas de promoção da saúde em territórios de vulnerabilidade social. Ciênc. saúde colet.. 2017;22(12):3915-32. https://doi.org/10.1590/1413- 812320172212.24912017.
20. Feitosa EPS, Dantas CAO, Andrade-Wartha ERS, Marcellini PS, Mendes-Netto RS. Food habits of students of one public university of Northeast, Brazil. Alim Nutr. 2010;21(2):225-230. https://doi.org/
21. Fischler C, Masson E. (Orgs.). Comer: A alimentação de franceses, outros europeus e americanos. São Paulo, SP: SENAC.
22. Maia EG, Gomes FMD, Alves MH, Huth YR, Claro RM. Hábito de assistir à televisão e sua relação com a alimentação: resultados do período de 2006 a 2014 em capitais brasileiras. Cad Saúde Pública. 2016; 32(9):e00104515. https://doi. org/10.1590/0102-311X00104515.
23. Menegassi B. Eat regularly and carefully, in appropriate environments and in company: A brief analysis of this recommendation of the Brazilian Food Guide. Appetite. 2020;149:104619. https://doi.org/10.1016/j.appet.2020.104619.
24. Nazmi A, Tseng M, Robinson D, Neill D, Walker J. A Nutrition Education Intervention using NOVA is more effective than MyPlate alone: A proof-of-concept randomized controlled trial. Nutrients. 2019;11(12):2965. https://doi.org/10.3390/ nu11122965.

Published

2022-12-06

How to Cite

de Paula Beltran, A. B., Morais Marangoni, V., Justo La Pastina, J. P., Martinez, S., & de Queiroz Mello, A. P. (2022). Quality of Food in the University Community based on the Food Guide for the Brazilian Population: 10.15343/0104-7809.202246458471I. O Mundo Da Saúde, 46, 458–471. Retrieved from https://revistamundodasaude.emnuvens.com.br/mundodasaude/article/view/1451