Acute blood glucose responses on the second day of recovery from moderate vs. high intensity resistance exercise in women with type 2 diabetes

10.15343/0104-7809.202246348356I

Authors

Keywords:

Resistance exercise. Diabetes. Blood glucose control.

Abstract

Resistance exercise (RE) can lower blood glucose in people with type 2 diabetes (T2D). However, greater clarity is needed regarding the RE intensity and time required for this acute response. Therefore, the aim of this study was to compare acute blood glucose responses on the second day of recovery from moderate vs. high-intensity RE in women with T2D. Twelve women with T2D (55.2 ± 4.0 years; 70.1 ± 11.4 kg; and 155.7 ± 3.3 cm) performed two experimental sessions seven days apart in a randomized order. For session 1: RE40% of one-repetition maximum test (1RM) and session 2: RE80%1RM, with 16 and 8 repetitions for each set, respectively, in 7 exercises with 3 circuits during 40min. Blood glucose was monitored for over 35h (first day: 24h and second day: 11h) every 5 minutes after each experimental session by the Continuous Glucose Monitoring System (Guardian REAL-Time model). Student's t-test showed no significant difference in blood glucose on the second day (11h) after RE40%1RM vs. RE80%1RM sessions [respectively, 161.3 ± 62.3 mg.dL-1 vs. 157.2 ± 41.9 mg.dL-1; t (11) = 0.259; p = 0.800]. Two-way ANOVA for repeated measures showed that blood glucose responses every hour during recovery on the second day showed no significant differences between RE sessions [F (1.731, 19.039) = 0.688; p = 0.734]. We concluded that the acute blood glucose responses on the second day of moderate and high intensity RE did not differ among women with T2D.

Downloads

Download data is not yet available.

References

1. International Diabetes Federation. IDF Diabetes Atlas, 10th Edition. Brussels, Belgium: 2021; accessed 2022Aug.21; International diabetes federation. Available from: https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf
2. BRASIL. Department of Surveillance of Noncommunicable Diseases and Diseases and Health Promotion, Secretariat of Health Surveillance, Ministry of Health VIGITEL BRASIL 2018: surveillance of risk and protective factors for chronic diseases by telephone survey [electronic resource]. Brasília: 2019, Distrito Federal.
3. Melo KCB, de Souza Araújo F, Júnior CCMC, de Andrade KTP, Moreira SR. Pilates method training: functional and blood glucose responses of ol
der women with type 2 diabetes: 10.1519/JSC.0000000000002704. J Strength Cond Res [internet]. 2020; accessed 2022Aug.21; 34(4):1001- 1007. Available from: https://journals.lww.com/nsca-jscr/Abstract/2020/04000/Pilates_Method_Training__Functional_and_Blood.17.aspx
4. Van Dijk JWM, Manders RJF, Hartgens F, Stehouwer CD, Praet SFE, Van Loon LJC. Postprandial hyperglycemia is highly prevalent throughout the day in T2D patients: 10.1016/j.diabres.2011.03.021. Diabetes Res Clin Pract [internet]. 2011; accessed 2022Aug.21; 93(1):31–37. Available from: https://www.sciencedirect.com/science/article/pii/S0168822711001409
5. Feng B, Cao Y, Chen S, Ruiz M, Chakrabarti S. Reprint of: miRNA-1 regulates endothelin-1 in diabetes: 10.1016/j.lfs.2014.10.001. Life Sci [internet]. 2014; accessed 2022Aug.21; 118(2):275-280. Available from: https://www.sciencedirect.com/science/article/pii/S0024320514008017
6. Monteiro CI, Simões RP, Goulart CL, Silva CDD, Borghi-Silva A, Mendes RG. Arterial stiffness in type 2 diabetes: determinants and indication of a discriminative value: 10.6061/clinics/2021/e2172. Clinics [internet]. 2021; accessed 2022Set.14; 76:e2172. Available from: https://www. scielo.br/j/clin/a/3XKtsWZppLnLtCVvMSZNPpz/
7. Ceriello A. Postprandial hyperglycemia and diabetes complications: Is it time to treat?: 10.2337/diabetes.54.1.1. Diabetes [internet]. 2004; accessed 2022Aug.21; 54(1):1-7. Available from: https://diabetesjournals.org/diabetes/article/54/1/1/14626/Postprandial-Hyperglycemia-and- Diabetes
8. Andrade IYTP, Melo KCB, de Andrade KTP, Almeida LG, Moreira SR. Pilates training reduces blood pressure in older women with type 2 diabetes: A randomized controlled trial: 10.1016/j.jbmt.2022.02.022. J Bodyw Mov Ther [internet]. 2022; accessed 2022Aug.21; 30, 168-175. Available from: https://www.sciencedirect.com/science/article/pii/S1360859222000389
9. Cavalot F, Petrelli A, Traversa M, Bonomo K, Fiora E, Conti M, et al. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in T2D mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study: 10.1210/jc.2005- 1005. J Clin Endocrinol Metab [internet]. 2006; accessed 2022Aug.21; 91(3):813–819. Available from: https://academic.oup.com/jcem/ article/91/3/813/2843304
10. Roche MM, Wang PP. Sex differences in all-cause and cardiovascular mortality, hospitalization for individuals with and without diabetes, and patients with diabetes diagnosed early and late1: 10.2337/dc12-1272. Diabetes Care. 2013; accessed 2022Aug.21; 36(9):2582–2590. Available from: https://diabetesjournals.org/care/article/36/9/2582/37900/Sex-Differences-in-All-Cause-and-Cardiovascular
11. Figueira FR, Umpierre D, Casali KR, Tetelbom PS, Henn NT, Ribeiro JP, et al. Aerobic and combined exercise sessions reduce glucose variability in T2D: crossover randomized trial: 10.1371/journal.pone.0057733. Plos One [internet]. 2013; accessed 2022Aug.21; 8(3):e57733. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057733
12. Kumar AS, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A, et al. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis: 10.1016/j.rehab.2018.11.001. Ann Phys Rehabil Med [internet]. 2019; accessed 2022Aug.21; 62(2); 98- 103. Available from: https://www.sciencedirect.com/science/article/pii/S1877065718314830
13. Richter EA, Hargreaves M. Exercise, glut4, and skeletal muscle glucose uptake: 10.1152/physrev.00038.2012. Physiol Rev [internet]. 2013; accessed 2022Aug.21; 93(3):993–1017. Available from: https://journals.physiology.org/doi/full/10.1152/physrev.00038.2012
14. Van Dijk JW, Manders RJ, Canfora EE, Mechelen WV, Hartgens F, Stehouwer CD, et al. Exercise and 24-h glycemic control: equal effects for all T2D patients?: 10.1249/MSS.0b013e31827ad8b4. Med Sci Sports Exerc [internet]. 2013; accessed 2022Aug.21; 45(4):628–635. Available from: https://journals.lww.com/acsm-msse/Fulltext/2013/04000/Exercise_and_24_h_Glycemic_Control__Equal_Effects.4.aspx
15. Van Dijk JW, Manders RJ, Tummers K, Bonomi AG, Stehouwer CD, Hartgens F, et al. Both resistance- and endurance-type exercise reduce the prevalence of hyperglycaemia in individuals with impaired glucose tolerance and in insulin treated and non-insulin-treated T2D patients: 10.1007/s00125-011-2380-5. Diabetologia [internet]. 2012; accessed 2022Aug.21; 55(5):1273–1282. Available from: https://link.springer.com/ article/10.1007/s00125-011-2380-5
16. Melo KCB. dos Santos GA, de Souza Araujo F. Moreira SR. Detraining period of the PILATES method on functional capacity of elderly women with type 2 diabetes: A randomized clinical trial: 10.1016/j.jbmt.2022.03.012. J Bodyw Mov Ther [internet]. 2022; accessed 2022Aug.21; 31, 77-83. Available from: https://www.bodyworkmovementtherapies.com/article/S1360-8592(22)00052-3/fulltext
17. Van Dijk JW, Venema M, Mechelen WV, Stehouwer CDA, Hartgens F, van Loon LJC. Effect of moderate-intensity exercise versus activities of daily living on 24-hour blood glucose homeostasis in male patients with T2D: 10.2337/dc12-2620. Diabetes Care [internet]. 2013; accessed 2022Aug.21; 36(11):3448–3453. Available from: https://diabetesjournals.org/care/article/36/11/3448/37983/Effect-of-Moderate-Intensity- Exercise-Versus
18. Bacchi E, Negri C, Trombetta M, Zanolin ME, Lanza M, Bonora E, et al. Differences in the Acute Effects of Aerobic and Resistance Exercise in Subjects with T2D: Results from the RAED2 Randomized Trial: 10.1371/journal.pone.0049937. Plos One [internet]. 2012; accessed 2022Aug.21; 7(12):e49937. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049937
19. Cruz LC, Teixeira-Araujo AA, Andrade KTP, Rocha TCG, Moreira SR. Low intensity resistance exercise attenuates the relationship between glucose and autonomic nervous system indicators during 24 hours in women with T2D: 10.1016/j.scispo.2017.10.004. Sci Sports [internet]. 2018; accessed 2022Aug.21; 33(2):e75-e83. Available from: https://www.sciencedirect.com/science/article/pii/S0765159717302083
20. Cruz LC, Teixeira-Araujo AA, Andrade KTP, Rocha TCOG, Puga GM, Moreira SR. Low-intensity resistance exercise reduces hyperglycemia and enhances glucose control over a 24-hour period in women with T2D: 10.1519/JSC.0000000000002410. J Strength Cond Res [internet]. 2019; accessed 2022Aug.21; 33(10):2826-2835. Available from: https://journals.lww.com/nsca-jscr/Abstract/2019/10000/Low_Intensity_ Resistance_Exercise_Reduces.27.aspx
21. Fenicchia LM, Kanaley JA, Azevedo Jr JL, Miller CS, Weinstock RS, Carhart RL, et al. Influence of Resistance Exercise Training on Glucose Control in Women With T2D: 10.1016/j.metabol.2003.10.007. Metabolism [internet]. 2004; accessed 2022Aug.21; 53(3):284–289. Available from: https://www.sciencedirect.com/science/article/pii/S0026049503004992
22. Moreira SR, Simões GC, Moraes JF, Motta DF, Campbell CS, Simões HG. Blood glucose control for individuals with T2D: acute effects of resistance exercise of lower cardiovascular-metabolic stress: 10.1519/JSC.0b013e318242a609. J Strength Cond Res [internet]. 2012; accessed 2022Aug.21; 26:2806–2811. Available from: https://journals.lww.com/nsca-jscr/Fulltext/2012/10000/Blood_Glucose_Control_for_Individuals_ with_Type_2.26.aspx
23. Leenders M, Verdijk LB, Van der Hoeven L, Adam JJ, Van Kranenburg J, Nilwik R, et al. Patients with T2D show a greater decline in muscle mass, muscle strength, and functional capacity with aging: 10.1016/j.jamda.2013.02.006. J Am Med Dir Assoc [internet]. 2013; accessed 2022Aug.21; 14(8):585–592. Available from: www.sciencedirect.com/science/article/abs/pii/S1525861013000960
24. Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, Braggion G. Questinário internacional de atividade f1sica (IPAQ): estudo de validade e reprodutibilidade no Brasil: 10.12820/rbafs.v.6n2p5-18. Rev. Bras. Ativ. Fís. Saúde [internet]. 2001; accessed 2022Set.14; 6(2):05–18. Available from: https://pesquisa.bvsalud.org/portal/resource/pt/lil-314655
25. Lohman TG, Roche AF, Martorell R. Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics, 1988.
26. Rech CR, Santos DL, Silva JCN. Desenvolvimento e validação de equações antropométricas para predição da gordura corporal em mulheres entre 50 e 75 anos de idade. Rev Bras Cineantropom Desempenho Hum [internet]. 2006; accessed 2022Aug.21; 8(1):5–13. Available from: pesquisa.bvsalud.org/ripsa/resource/pt/lil-473023
27.Center for Studies and Research in Food - NEPA. Brazilian Table of Food Composition – TACO/UNICAMP (4th ed.) [electronic book]. Campinas, Brazil: NEPAUNICAMP. 2011. accessed 2022Aug.21. Available from: https://www.nepa.unicamp.br/taco/contar/taco_4_edicao_ ampliada_e_revisada.pdf?arquivo=1
28. Meade LT. The use of continuous glucose monitoring in patients with T2D: 10.1089/dia.2011.0086. Diab Tech Therap [internet]. 2012; accessed 2022Aug.21; 14 (2):190–195. Available from: https://www.liebertpub.com/doi/abs/10.1089/dia.2011.0086
29. Terada T, Loehr S, Guigard E, McCargar LJ, Bell GJ, Senior P, et al. Test–retest reliability of a continuous glucose monitoring system in individuals with T2D: 10.1089/dia.2013.0355. Diab Tech Therap [internet]. 2014; accessed 2022Aug.21; 16(8):491–498. Available from: https:// www.liebertpub.com/doi/abs/10.1089/dia.2013.0355
30. Brooks GA, Faheym TD, White TP. Exercise Physiology: Human Bioenergetics and its Applications. 2ª ed. Mountain View: Mayfield, 1995.
31. Kjaer M, Hollenbeck CB, Frey-Hewitt B, Galbo H, Haskell W, Reaven GM. Glucoregulation and hormonal responses to maximal exercise in noninsulin-dependent diabetes: 10.1152/jappl.1990.68.5.2067. J Appl Physiol [internet]. 1990; accessed 2022Aug.21; 68(5):2067–2074. Available from: https://journals.physiology.org/doi/abs/10.1152/jappl.1990.68.5.2067.
32. Buijs RM, Ruiz MAG, Hernández RM, Cortés BR. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters: 10.1016/j.autneu.2019.02.001. Auton Neurosci [internet]. 2019; accessed 2022Aug.21; 218:43-50. Available from: www.sciencedirect.com/science/article/pii/S1566070218302832
33. Koopman R, Manders RJ, Zorenc AH, Hul GB, Kuipers H, Keizer HA, et al. A single session of resistance exercise enhances insulin sensitivity for at least 24 h in healthy men:10.1007/s00421-004-1307-y. Eur J Appl Physiol [internet]. 2005; accessed 2022Aug.21; 94(1-2):180–187. Available from: https://link.springer.com/article/10.1007/s00421-004-1307-y
34. Gordon BA, Fraser SF, Bird SR, Benson AC. Insulin sensitivity not modulated 24 to 78 h after acute resistance exercise in T2D patients: 10.1111/ dom.12057. Diabetes Obes Metab [internet]. 2013; accessed 2022Aug.21; 15(5):478–480. Available from: https://dom-pubs.onlinelibrary.wiley. com/doi/abs/10.1111/dom.12057

Published

2022-11-23

How to Cite

Carvalho da Cruz, L., Teixeira-Araújo, A. A., Teixeira Passos de Andrade, K., Kayola dos Santos Barros, L., Santos do Vale, T., Souza Augusto, S., & Rodrigues Moreira, S. (2022). Acute blood glucose responses on the second day of recovery from moderate vs. high intensity resistance exercise in women with type 2 diabetes: 10.15343/0104-7809.202246348356I. O Mundo Da Saúde, 46, 348–356. Retrieved from https://revistamundodasaude.emnuvens.com.br/mundodasaude/article/view/1443